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Abstract.

A Gain-Scheduling Neural Network Architecture is proposed to enhance the noise-filtering efficiency of feedforward
neural networks, in terms of both nominal performance and robustness. The synezglstic benefits of the proposed ar-
chltecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered

in aerospace control systems. The synthesis of such a gain.scheduled neurofiltering provides the robustness of linear
filtering, while preserving the nominal performance advantage of conventional non-linear neurofiltering. Quantitative
performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot
command inputs fox u modern fighter sircaft model.

1. Introduction.

The capability of feedforward neural networks to serve as noise-filters for complex systems with varying

characteristics and/or changing modes of operation was recently analysed for the noise-filtering of signals

that are typically encountered in aerospace control and diagnostic systems [i]. For such systems, the nominal

dynamics of the signals are a simplified version of the actual dynamics, due to modelling approximations,

system uncertainties, and/or changing modes of operation. As a result, the desired neurofilter should not

only provide satisfactory signal processing over the nominal dynamic range of the signals, but should also be

robust and maintain its performance in the presence o_ changes in the nominal dynamics of the signals. From

that perspective, linear and non-linear feedforward neural networks were trained to filter noise by learning to

map sequences of noisy input data onto the exact values of the most recently sampled data [I]. Comparative

performance/robustness evaluations indicated that the synthesised non-linear neurofilter performed better
than the linear neurofdter within the nominal dynamic range of signals; whereas the linear neurofilter was

more robust in the presence of substantial variations in the parameters of the signal generating process. This

result pointed to the need for a more global neural architecture with a potential to synergistically combine

the complementary benefits of linear neurofiltering and conventional non-linear neurofiltering.
To address that issue, a gain-scheduUng neural network (GSNN) architecture is proposed to find the

optima] combination of linear and non-linear neurofi]tering that provides the best signal estimates from input

sequences of noisy data. The system functionality of the gain-scheduled neurofilter is briefly introduced in

section 2, while section 3 describes the gain-scheduling training architecture itself. In Section 4, the nominal

• performance and robustness of the gain-scheduled neural network are compared to those of the linear and non-

linear neurofilters separately, while Section 5 discusses possible extensions towards performance/robnstness

enhancement, non-linear adaptive neurofiltering, and neurosmoothing.

2. System Functionality of the Neurofilter.

The system functionality of the neurofilter is illustrated in Fig.l in the context of an aerospace control

system application. The signals to be filtered are the simulated pitch-rate responses to both pitch rate

and velocity commands. The closed-loop system includes a non-linear neurocontroUer designed in Refa.[2-3]

to provide independent control of pitch-rate/airspeed for a state-space representation of a modern fighter

aircraft [4]. The plant model consists of an integrated airframe/propulsion linear model, a fuel flow actuator
modelled as a linear second order system with position and rate limiLs, and a thrust vectoring actuator

modelled as _ linear first order system with position and rate limits. As a result, the signal generating

process represented by the closed-loop control system of Fig.1 contains nonlinearities due to the actuator

position/rate limits, and the nonlinear structure of the neurocontroller. For the purpose of this study, the

l Sverdrup Technology, Inc., 2001 Aerospace Parkway, Brook Park, Ohio, 44142.



noise source has been placed outside of the control loop so that a clean baseline signal would be available for

comparison. The purpose of the trained neurofilter is to provide an estimate of the actual data values that

have been corrupted by noise in order to enhance any subsequent processing by ou_-o/-the-loop peripheral
modules such as failure-detectors and failure-identifiers (e.g. Eel.J5]), off-line/on-line system-ldentifiers (e.g.

Ref.[6]),d mageestimato (e.g. etc.
In this simulation, the information needed to synthesise the neurofilter is provided by closed-loop pitch

rate responses to input commands _s_(t) = (qsBL(t), VSBL(t)), where qss_(t) is the pitch rate command

input, and _szL(_) is the velocity command input. The pitch rate command input qsBz,(_) is a doublet
randomly centeredat a time tcbetween 2.5sand 5s such thatqsBx,(t__to)= Qo, qsBz,(tc< t __2to)= -Qo,

and qs_(2*c < t)= 0,as indicatedin Fig.2a.The concurrent velocitycommand input isthe step function

vSEL(t __ 0) = 0 and _sE_,(0< *) = V00 as indicatedin Fig.2b. These commanded inputs qsEL(t) and

_sBl,(*),which representthe f_equency-contentoftypicalpilotcommand inputs,were subsequently filtered

through a prefliter.for-commaa_-sl_ping (Fig.l) in order to generate the commanded trajectories _'c(t) =

(qc(t), _c(t)) that are to be tracked by the closed-loop control system. The commanded pitch rate response

qc(t) and the commanded velocity response _c(t) corresponding to a doublet pitch rate command input

qsB_.(t) and a step velocity command input _sBL(t) are represented in the diagrams of Fig.2. The maximum
intensities [Q0[ and [Vol of the randomly selected input commands were bounded by Qma= = 3deg/sec

(corresponding to 0.5 inches of pilot stick deflection), and Y,m_= = 20.f_/s. The pitch rate responses to such

randomly generated pilot command inputs were sampled every A = 10rna over T = 14s, and they were
corrupted with additive gaussian white noise with a standard deviation _tr,i,z¢ng = 0.3deg/sec before being

passed to the training architecture of the neuro_ter.

3. Gain-Scheduling Training Architecture.

The proposed neurofilter consists of a linear neural network and a non-linear neural network with op-
timised internal configurations, and whose outputs are modulated by a gain-scheduling feedforward neural

network. The optimised linear neural network and the optimized non-linear neural network used in this

simulation were trained in Ref.[1] with the training architecture shown in Fig.3. During training, the in-

puts of these two neurofilters consisted of sequences _of the fifty most recently sampled noisy data, and the

target values were the exact values of the last sampled data. In Fig.3, the notation FA(p, h, 1) represents

a feedforward neural network with p input units, a single hidden layer of h sigmoidal neurons, and a single
linear output neuron. Both linear and non-linear neurofilters were trained to minimise the error (_ - q)3(t)

between the filter output _(t) and the exact value q(t) of the pitch rate signal generated as in Section 2.
The optimised network configurations of these two types of neurofilters were FA(50, 30, 11 for the non-linear

neurofiltering (i.e. 50 inputs, 30 hidden slgmoidal neurons, and 1 linear output neuron), and FA(50, 11 for

the linear neurofiltering (i.e. 50 inputs, and 1 linear output neuron).
As shown in Fig.4, the "fusion" of the optimized linear and non-linear neurofilters is achieved by training

a gain-scheduling neural network to minimize the error (_#_v - q)_(t) between the Gain.Scheduled Neural

Network output _as_v(t) and the exact value q(t) of the pitch rate signal generated as in Section 2. As
indicated in Fig.4, the gain-scheduled neurofilter estimate q(t)Gs_N is an adaptive combination of the non-

linear neurofilter estimate _(t)_o,,_,_,, ,, and the linear neurofilter estimate _(t)_,,_,,:

= × + (l-- × (1)

where the gain g(t) isthe output of the non-lineargain-schedulingneural network. The roleof the gain-

schedulingneuralnetwork isthereforeto findthe optimal combination oflinearand non-linearneurofiltering

that extractsthe best signalestimatesfrom input sequences of noise-corrupteddata. In order to facilitate

this"classification",the inputsof the gain-schedulingneural network were chosen to be filterestimatesof

the exact signalvalues insteadof the originalnoisy data vaiues. These filterestimates were furthermore

chosen to be the computed outputs ofthe linearneurofilter,in lightof the robustnessadvantage that linear

filteringhas over conventionalnon-linearneurofiltering.The configurationof the gain-schedulingneural

network chosen in thisapplicationconsistedoftwenty fiveinput units,ten hidden sigmoidal neurons, and a

linearoutput neuron with the thresholdingactivationfunction I/(z):

y(z<0)=0; I/(0<z<1)=z; y(1<_z)=l, (2)

and trainingwas performed with the backpropagation algorithm [8-9].



4. Comparative Nominal Performance and Robustness Evaluations.
The ability of the linear, non-linear, and gain-scheduled neurofilters to remove the noise from the pitch

rate response to a given pilot commanded input _c" is measured by the ratio Rc

T/b A
p_ _ _/_k=o (q(tk) - q(_k))2 , (3)

T/_ ^ 2

T being the duration of the pilot command input, and A the sampling time of the vehicle outputs. In Eq.(3),

q(tk) is the exact pitch rate response, fi(tk) is the white noise fluctuation added to q(tk), and _(tk) is the

filter output corresponding to an input sequence ofp sampled noisy data, i.e. _q(t__i)+_(tk-i), min(_, p) >_

_>o}.
To compare the performances of the aforementioned neurofilters, two measures _R" and "r" based on

Eq.(3) are introduced [I]. The R-measure is a statistical average of Rc calculated over the whole dynamic

range of pilot command inputs as characterized in Section 2 by (Qo, Vo, to) where Qo, Vo, and t_. are uniformly
distributed over [-Qms=, +Q,,_,=], [-V,_=, +V,_,ffi], and [2.5s, 5s] respectively. The r-measure is the value

of R_. for a most demanding case of pilot command input corresponding to the pitch rate doublet QsEL(t <_

5sec) = Qm,,, QSEL(SSeC < t __ 10sec) = -Q_, QSEL(IOsec < _) = 0; and the velocity step VSEL(t <

0) = 0 and VSEL(0 < _) = V,_,=. The R-measure grades the average efficiency of a neurofilter in removing
the noise over an exhaustive set of pilot command inputs, whereas the r-measure estimates the filtering

efficiency for one of the worst cases of pilot command inputs. To test the ability of the neurofilters to

operate at noise levels other than that used in training, the R- and r- measures were evaluated with gaussian
white noise of various standard deviations ranging from _,n_,_ = 0 to cr,_== = ldeg/sec. The values of the

R- and r- measures corresponding to the nominal dynamic range of the signals are plotted in Figs.5a & 6a

respectively. The results show that the gain-scheduled neurofilter outperforms both the optimised linear

filter and the optimised non-linear neurofilter, not only at the noise level used in training, but also at all

noise levels between _,,_,_ = 0 and _rn,_ = ldeg/sec.

To further compare the robustness of the gain-scheduled neurofilter with the robustness of the optimized
linear neurofilter and non-Unear neurofilter respectively, the R- and r-measures were also evaluated on a

test set extending beyond the nominal dynamic range of the signals (used for training) and generated as
follows. The matrix elements of the A, B, and C matrices of the vehicle model [4] were randomly varied
within :1:50% of their nominal values, with the sole requirement that the stability of the closed-loop system

be preserved [2]. Due to the severity of the deviations of the A, B, C matrices from their nominal values,
the closed-loop system responses to typical pilot command inputs presented significant deviations from the

nominal responses. The statistical evaluations of UR" and ur= are plotted in Figs.Sb & 6b respectively for a

typical set of A, B, and Cs leading to large variations of the vehicle model. The results show that the gain-
scheduled neurofilter still outperforms the optimized linear filter and the optimized non-linear neurofilter

at all noise levels. This is graphically illustrated in Fig.7 by the filtering of the pitch rate response to the

most demanding pilot command input of the vehicle model with the same set of off-nominal A, B, and C
matrices as that used for the evaluations of the R- and r-measures plotted in Figs.5b & 6b respectively.

As shown by the plots of Fig.7a, 7b & 7c, additive gaussian white noise is more efficiently removed from

the noisy closed-loop signals by the gain-scheduled neurofilter (7c) than by the optimized linear neurofilter

(7a) or the optimized non-linear neurofilter (7b) separately. The synergistic benefits of the newly proposed

gain-scheduling architecture are even more apparent when comparing Figs.7a, 7b & 7c in light of the plot of

the gain-scheduling neural network output (identical to the output gain of the non-llnear neurofilter) shown

in Fig.7d. This comparison indicates that the gain-scheduled neurofiltering presents the characteristics of
linear neurofiltering around 1 sec and 6 sec, i.e. when the pitch rate estimates of the linear neurofilter are
better than those of the non-linear neurofilter. More specifically, Fig.7d also indicates that, around 1 sec,

the gain-scheduled neurofilter estimate consists of about 80 % of linear neurofilter estimate, and about 20
% of non-linear neurofilter estimate. Around 6sec, the gnin-schedu]ed neurofilter estimate is 100 % of the

linear neurofilter estimate. Otherwise, the gain-scheduled neurofilter estimate is for the most given by the

non-linear neurofilter estimate, e.g. above 12 sec where it is 100 % of the non-linear neurofilter estimate.



5. Conclusion.
A Gain-Scheduling Neural Network Architecture has been proposed to enhance the robustness of feed-

forward neurofilters, and was analysed in the context of the noise-filtering of pitch rate responses to pilot

command inputs for a modern fighter aircraft model. The proposed architecture consists of an optimized

linear feedforward neurofilter, an optimised non-linear feedforward neurofilter, and a gain-scheduling feed-
forward neural network which is trained with backpropagation to synergistically combine the complementary

benefits of the linear and non-linear neurofiiters. The resulting gain-scheduled neurofilter consistently per-

formed better than each neurofilter separately, within the nominal as well as off-nominal dynamic range of

the simulated signals.
Future areas of research would include possible extensions of the functionality and scope of the pro-

posed gain-scheduling neural network architecture. Of particular interest would be the possibility of further

enhancing neurofiltering through the gain-scheduling of a collection of linear filters that would have been

separately optimised on the disjoint elements of a partition of the space of the input signals. The synthesis of

the multi-output gain-scheduler(s) required for the fusion of such optimised linear neurofilters could benefit

from the robustness of genetic algorithms or even fussy rule-based scheduling, or from tra_ing algorithms

like those developed for the hierarchical mixing of expert neural networks [10].
Of additional interest would be the possibility to extend the proposed architecture to _chieve non-linear

_daptive neurofdterin9 through the synergy of supervised and unsupervised training schemes, and by taking

adwntage of the on-line learning capabilities of neural networks. An important practical issue to be addressed

in that regard would be whether neural networks can be trained in unsupervised training modes to efficiently

gain-schedule the supervised training of a partition of individual neurofilters of the type proposed in Ref.[11].
Of further interest would be the possibility to extend the proposed architecture to the smoothing of noisy

signals by training a neural network to gain-schedule optimised linear and non-linear aeurosmoothers th,_t
would have been previously trained to map sequences of p successively sampled noisy data onto the exact

values of any of the previous (p-1) samples input to the network. Such gain-scheduled aeurosmoothers would

be expected to provide better signal estimates than their r.eurofi/tel" counterparts in view of the additional

information provided [11-12], yet at the expense of the time corresponding to the delay needed for the signals
to be available. How to reach the best compromise b_tween "accuracy" and Utime" would therefore depend

upon the computational requirements and characteristics of the specific post-processing to be performed on

the signals.

Finally, future comparative analysis with other traditional t_echniques, such as Extended Kalman Filtering

[13], could also provide insight on how to improve the performance and broaden the applicability of the

proposed Gain-Scheduling Neural Network approach.
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